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APPLICATION OF THE LAPLACE TRANSFORMATION TO THE
SOLUTION OF THE LATERAL AND LONGITUDINAL
STABILITY EQUATIONS

By G. A. Mokrzycki
SUMMARY

The applicatlon of the Laplace transformation to ths solution of
the lateral and longitudinel stebility equations ls presented. The
expressions for the time history of the motion in response to a
sinusoidal control motion are derlved for the general case in which
the initial conditions, Initlal displacements and Inltial velocltles,
are assumed different from zero. Some 1llustratlive examples of the
application of the Laplace transform to ordinary linear differentisl
equatlons with constant coefficlents and a numerical example of a
apecific problem are presented in appendixes.

INTRODUCTION

Recent developments 1n piloted and pllotless aircraft, equipped
with automatlc devices, have directed the stitention of engineers to
the theoretical investigation of dynamic longitudinal and latersal
gtabllity problems of alrcraft designed for high-speed and high—
altitude flight. In the past, the dynamlc stabllity investlgations
were usually limited to the determination of Routh's condition for
stabllity and for the calculatlon of the roots of the characteristic
stabllity equatlon to determine the damping of the modes of motion
and the perlod of the oscillation. A more complete analysis of the
problem requires the calculetlon of a tims history of the airplane
motlion in response to a gust disturbance or in response to the
application of the control surfaces. As the methods of classical
analysis (references 1 and 2) proved to be inadequate for this
purpose, new msthods of operational mathematles, representing a
more powerful tool, were used. These methods are known today as the
Heaviside operational calculus and the Laplace transformation. The
application of the Heaviside operatlonal calculus to ths calculation
of alrplane motions is discussed in references 3, 4, and 5. However,
the Laplace transformation is considered a more powerful method than
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the Heaviside operational calculus because the Initial condltlons of r
_ the problem, initial displacements and initial velocities, are inher-

ently taken Into account by the Laplace transformation, whereas in

the Heavislde operational calculus, all Initisl conditlons are zero.

In this paper, the Laplace transformestion 1s applied to both the
longitudinal and lateral stability equations for the gensral case where
the inltial displacements and initiasl velocliles were assumsd different
from zero. The operational equatlons obtained for thls general case
were then solved and the time history of the motion was obtained by the
Heaviside expansion theorem and by the lnversion theorem for Laplace
transformation. The Laplace transformation is simple and effective.
Ite principles are. easily understood and its technique quickly learned.
It represents a further development In operational mathematlce because
it is a more powerful mathemstlcal tool and because the difficulties
and obscurities of-the work of Hesavislde are avolded.

A short historical sketch tracing the development of operational
mathematica and 1ts application to airplane dynamlice is presented in
appendlix A. _ »

. The author is indebted to Mr. Leonard Sternfield .of the Langley
Stabllity Research Division, NACA, for Informatlon and collesboration
he has contributed in connection with this paper.

SYMBOLS
c chord, feet-
b span, feet ' - . : ek
S wing area, square feet
W welght, pounds L . .
m m;ss, slugs (g)
p denslty, slugs per cubic foot} -
A airspeed, feet per second
t time, seconds

8¢ nondimensional time paramster based on chord (t:%)
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8 nondimensional tims paramster based on span (‘b %)
Bo reletive density coefficient based on chord (%)
c
Ky, relative density coefficient based on span (%)
Do differentlal operator with respect to s¢ -&g—)
c
Dy, differential operator with respect to By 5.%—>
b
P opsrator in Laplace transformation
A root of stability equation
]:xo radlus of gyretlon about principal longitudinal axis,
Pest '
kYo radius of gyration sbout principal laterel axls, fset
k7o ) radius of gyration about principal vertical axis,
feot
KXO nondimengional radius of gyration about principal

longitudinal axis (kxo /b)

KYo nondimensional radius of gyratlon about principal
lateral axis (kyo /c)

X o nondimengional radlus of gyration about principal
vertical axis (kzo/b)

1 anglo between principal longitudinal axis of inertia
and flight path (fig. 1), degrees

€ angle between reference axis and principal longi—

tudinal axis (fig. 1), degrees

a angle of attack (fig. 1), degrees
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flight—path angle between path and horizontal
(rig. 1), degrees

attitude angle between reference line and horizontal
line, degrees (a + 7)

deflection angles of-ailleron, elevator, and rudder,
degrees

pitching angular veloclty, radians per second (6)
angle of sldesllp, radians

azlmuth angle, radians

yawing angular veloclty, radians per second (\'P’)

angle of bank, radlans

rolling angular velocity, radiens per second (¢>

increment of forward veloclty, feet per second

nondimensional increment—of forward velocity (%)

nondimensional radius of .gyration about longltudinal

stability axis (JKxozcoseq'+ Kzozsine'q)

nondimensional radius of-gyration about vertical

stability axls (szoacosaq + K%Eainen)
nondimensional product—of—inertia parameter

((KZ02 - KX02>sin 1 cos ,n)

rolling-velocity parameter (helix angle generated
by wing tip in roll), redians

pltching—velocity parameter, radlans
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yawing-velocity parameter, radians

dynamic pressure

.rectangular .coordinates (fig. 1)

longitudinal force, pounds (fig. 1)
lateral force, pounds (fig. 1)
normal force, pounds (fig. 1’)
rolling moment, foot~pounds (fig. 1)
pitching moment, foot—pounds (fig. 1)

yewing moment, foot—pounds (fig. 1)

v
drag coefflcient @-ﬁ%s)

1ift coefficlent <I%§—-J°)

longitudinal—force coefficient (é-)

lateral—Pforce coefficient (ELZS_)

normel-force coefficlent (E%)

pitching-moment coefficient (c_é‘»d_c)

rolling-moment coefflcient —I-'->

aSh

yawing-moment coefficient (ql‘?b)
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aCz BC;
Czaﬁ = é*s—a Sa + -ag 61-
3 2,

- L
0%8—58—a83+58;

Gi, Go, G3, Hy, Hp, H3 functlons of P on right side of oper—
ational equations

A 7~ n LY
A, I Ja¥ .
» B1s Lo 3 determinants
A: Al: A2: A3
A, B, C, D, B coefficients in fourth-dsgree characteristic
egquatlons
811 ¢« - - 833 abbreviated cosfficients in operationsl
b e o o D equation
11 33
gnn(® . .. 833(P) abbreviated functions of P in operational
hll(P) . .o h33(P) equation
R : residus

The subscript o 1is used to indicate initial conditions, a bar
is used to denote varilables in the operational esquations, and a dot 1s
used to denote differentiation with respect to tims.

ANALYSIS

The purposs of this paper is to show how the longitudinal and
laterel stabllity equations can be soelved by the Laplace transformation.
Thus no attempt 1s made to present a detailed discussion on the theory
of Laplace transform, which can be found in references 6 and 7 end in the
bibliography presented in appendix I of reference 6, but rathsr to
present sufficlent background of the theory to permit a clear under—
standing of its application to this particular problem.

If a function x(t), deflned for all pdésitive values of the

varlable +t, is multiplied by oLt and Integrated with respect-to ¥
from zero to infinity, a new function x(P) of the variable P is
obtained; that is
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T(P) = f " e Thx(t)dt
0

This operation on a function x(t) is called the Laplace transformation
of x(t). The necessary and sufficient conditions for the existence of
the Laplace trensform of a functlon x(t) are discussed in reference 6.
Let

ax e dx _
Eﬁ+ald—gk—_~r+...an_l-d?b-+anx-x(t) (l)

represent an ordinary linear differentlal equation with constant
coefficlents a;, ao, 83, « « + 853, 8p. If D 1is substituted

for %%, D° for %%, and so forth, equation (1) can be written in
operational form -
0% + e + . . . oay 107 4 ay)x = x(t) (12)

When t = 0, the following initial conditions gre assumed:

X = xo

= &x

17 3%
an—ly

The Laplace transformation of equation (la), with the use of the
letter P <for the operator, is
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(Pn + PP 4 . .. e 1P+ an)f = X(P) corrggﬁgﬁding :
0
+ QP“'lxo + P Px + . . . Pxyp + xn_l> D™x
+ al(Pn'Exo + P35 + . . Pxp 3 + xﬁre) p—lx
+ an_3(P2xo + Pxy + xz) D3x
+ ano(PX, + x7) D2x
+ ap_ 1%, Dx (2)

The transfaorm T(P) for x(t)} is taken from table I which presents
goms simple Leplace transforms. A more complete table of Laplace
transforms is given in appendix IIT of reference 6 and in appendix A
of reference 7. Appendix B shows two 1llustrative examples of the
application of Laplace transform to ordinary linear differential
equations with constant coefficients.

Longitudinal Motion

The nondimensional linearized stability equatlons for longi—
tudinal motion are given by NACA in the form:

B Dou’ = Oy B + Og, u' + (cxOL + 1 CXDaDc)a + (Cxe + L CXch)G

a‘LCDG(a‘ -— 9) = Czsese + CZu’u' + <CZG' + ;“ CZch>(I + (CZ6 + %‘ CZch)Q
1

a"GKYEDG% = émﬁe-f- 5 OmDaeDc>53 + Gmu'u' + ( + %’ CIﬂDd_Dc;)a

- 1
4 <cm9 + 2 cmch>e
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The Laplace transformation is demonstrated for the case in which the
elevator motion can be simulated by the sine function

8 = Oy sin asg (4)

where Oy 1s the amplitude. (In most cases By 1= assumed to be l.)
Rearranging and substituting equation (4) into equation (3) glve:

— t iy - iy
(EU.CDC Cxu,)u (Cxa +3 meDc>d- . (Cxe +3 qubc>e
= CXS Smsin asg
e

g, ut + [(a;c -2 ch)ch - cZa]a - I:(alc N % ch)Dc + czeile

= Czseﬁmsin as,

% (3a)

~Cppu* - <Cma, + % Cmch)C" + (a-'-oKY2D02 ~ Cmg = % Cmch>6
- (Cm69+ z CmD5eDc>5m sin as,

In order to 1llustrete the use of the Laplace transformation for
a very general case, the only initial condition assumed toc be zero
is 660 = 0; that is, the deflectlon is messured from its trim

positlon before the mansuver begins. For all other paramsters the
initial conditions are assumed to be different from zero; thus
the values are u,*, oy, 8,, and g, at s; = 0. The eguations can

then be written in general form, in which the four initial disturbances
are combined with eleveator motion. In a specific problem soms of the
initial conditions would probably be zero. For practical enginsering
purposes, In fact, the most interesting cases are

-/

(1) Disturbance only in angle of attack o, (due, for exsmple, to a
gust); elevator fixed; all other disturbances zero (20" =86 = g5 = 0)
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(2) Change in thrust, thus ug' # O; elevator fixed; other
disturbances zero (ag = 8y = Qo = 0)

(3) Disturbance caused by elevator motion; other disturbances
zoro (ug' = dg = 6o = Qo = 0)

Each of these assumptions greatly simplifies the equations and
shortens the computations, because many terms in equations developed
for a general case will vanish.

The Leplace transformstion of equation (3a) can be written as
follows:

2
(alcP - CXU.') ut — <CXCL + -]2—' CXDG'P>G' — (CXG + %‘- Cxq'P 2]
= Oxg_Bngg g + Bhobo' — 3 Cpaflo — 5 CXgfo
Oz, u' + [(axc - % CZDa>P - cza]a' - [(auc + % Czq>P + cze.]b'
1 r (5)

= a . -1 - L
"CZ86§mIQ ;22 + <?uc 5 CZDG)QD <?uc +5 CZq>90

O T — (cmOL + & 0%013)5 + (moxﬁlﬂ -2 O P — cme>§

- faog* & Oome,7)0m 22z ~ 5 Oapaso + e (20 + 00
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Equation (5) can be expressed in a shorter form as

where

a11T' + 8158 + a130 = Gy

a11

a1e2

al3

8.21—

oo =

aelﬁ' + aeea-: -+ a23§ = G-2

-

a3lﬁ' + &32& + 8.335 = G'3 ]

!
/;m\
Q
|
|
Q
£
Hd
!
QNO

ap3z = —

833 =

= ~Couyys
e + 4 ome)
= 2ukyPP2 Loy P

~

13

(5e)

(6)
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_ aCX868m+ El-’-cuo' - —]2'- Cxpgo t% queo) (P2 +a2)
. ' (P2 + 8.2)

_ _&1(p)
P2 4 aé

_ g1(P)
(P + 1a)(P — ia)

(1a)

aCZseam+ [(zuc - % CZD@)“’O - (2“0 +—%= Cijeo] (P2 + a2)
) (P2 + 89)

_ ga(P)
T (@ + 1a)(P - 1a)

(7}

0, Ou* & Onpg 8P + |‘2ueK§2 (P + a0) — & Cup B0 — % Cmqeo] (P2 + «?)
) | (22 + &2)

G3

_ 83(P)
" (P + 1a)(P — ia) ) (7¢)

Now the system (5) or (5a) represents three simultansous algebraic

equations which can be solved for U', &, and & by the method of
determinants. Thus .

W (8a)
A
A
9 = :3- (8c)
A
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where the determinsnt

& 80 al3
A= 8 8Bpp B3 (9)
831 832 833

The expansion of the determinent A results in a quartic equaticn
in P

A =AP* + BP3 + CP2 + DP + E (10)

which generally has two pairs of complex conjugate roots, namely

Pl,2 =-atib
P3,h =—< =14
Thus
A=(P+a—-—1b)(P+a+1ib)(P+c—1a)(P + ¢ + id) (102)

The coefficlents of the quartic (equation (10)) are

A= 2u02KY2(hpc = Czpe)
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B =1t [Kye(cxu: Copg, — XXyt — ¥z Mo — Oz, me)

+ --“QE(chcm(l AR (Cmg * cmmil

¢ = [“c (2% + OnyOzy ~ ¥omgho * Copelmg — Monghe + Cun Oxy

-C

)

Cp, —C

1
o~ OmpeZg ~ Omn “xpg, T Cmy Cxq_) * 1 Cupe®x 12

~ g Cyr O, + OmgCZut O, — OOy Crpy — C2 s Cpey

! ' -

+ Ong07,0 O = OX C20 Oy, ~ CX 20 Oy — 2, Cys %, — OO Oy,

+ Oz Ot Oxg + Cony czaqu) + 2p, (cmecxu, + CpeCa,

+ O Cxye — Cn Oz = OmyeCx, — Camye CXG)]

E = Czu. (C

1,0

Zg — CmeCZa) + Oz, (cmequL - cmacxe) + Coyye (CZaCXe - CZeCXo.)
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The other determinants are

g
1
5

U
)

812
apo

830

812
agp

8.32

al3
a23

833

8.13

When expanded the determinants can be written

&y = Gf13(P) - Gofyp(B) + G3f13(P)
ZQ = —Glfal(P) + G'gfgg(P) - G’3f23(P)

7

(11)

(12)

(13)

(11a)

(128)

(13a)
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where the minors £y4(P) are

f11 =

NACA TH 2002
8xp  8p3 812 813 212 833
fip = f13 =
a a a 3 a a
32 933 32 %33 22 %23
8o1 8o3 817 813 811 813
foo = fp3 =
831 %33 831 33 f21 %23
81 8o 8. 812 &1 212
T32 = f33 =
a31 832 a31 832 sy 8pp

After expanding, there result

£13(P) = {[KYEMC (L”"‘c - CZDCL)] 3

+

-+

-+

-

_Cqu: %Zpa " Pe) ~ CED“*GT Czq +uc> - QCZaucKyz]Pz

1 1 1 I
Conal = - - = + —-— —C
1"‘9(2 CZ e, 2uc) Cma.<2 Cg, 2%) 2(CZ Cmq Cq 6Cm ) P

(C2eCmg - CZeCmq)} (14)
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The other determinsnts are

L
il

(2]

\V]

&?I
]

8.31

a1l

&3 = lag)

a1

8120
apgo

a1o
a8oo

832

al3
8.23

233

al3

When expanded the determlnants can be written

By = Gf11(P) — Gofyp(P) + G3£13(P)

17

(11)

(12)

(13)

(112)

(122)

(132)
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where the minors fy j(P) are
S22 B3 fl2 813 812 %13
fi1 = fi1p = f13 =
832 B33 832 B33 822 o3
821 83 811 %13 811 3
fo1 = fop = Tp3 =
a3l 8.33 5.31 8.33 . 8.21 &23
81 8y 811 %12 811 By
f3 = f32 = f33 =
a31 &3 831 283p 801  8pp

After expanding, there result

fll(P) = {—kyeuc(huc - CZDC(,)] P3 _

ot =) el ) - ]

[ /L 1 1 _ '

+ (czmcme - czecma)} (14)
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£10(B) = {(—cxmucxf)ﬁ
+ [—mXGuGKYQ + %(mecmq - qucmm)] P2
1
+ §<mecmq + Cxp Omy — CxCmpy, — Cxqcmu' P

+ (Cxacme - CXeCma>}'

i) = {0, +ve) o e - o]
1 1
l .
* 5(Cap,0z, - qucza):lP

+ (Cx Lz = CXGCZG,)}

fan) = {20 0P
_ [Cmu' (-’EL- Oz + 2uc> -1 CZu,Cmq]P

- (cz oCme — Oz, Cme)}

19

(15)

(16)

(17)
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£op(P) = {(huceKYE)P3
- [uc (mxu,KYQ + cmq)] P2
* [Bafns ~ Oxng) - nghe]?

+ (cxu,cme - cmu,cxe)}

fp3(P) = {[—uc(czq + huc)JPz
- [_cxu,@: Oz, + 2%) + 2ggu, + 2 czu,qu:lp

— (Cxe02yr ~ Oxys CZG)}

£31(P) = {[% O 024 * Oy <2uc —% sz):lP

+ (czu' Cp = Cn, czm)}

f32(P) = [—(C%HC)PE
-(euc — Lo +Lc ¢ )P
cCmy, = 3 CXyiCmpy * 5 Cmye Cpy,

= (Cog2C%y, — OZys Cm@)]

NACA TN 2002

(18)

(19)

(20)

(21)
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. T33(P) = {l%c(h“c —'CZDui]Pe
+ [cxu, @ Op - euc) ~ 207, - %Czu.cxm]f’
+ (gxu,cza -cZu,cxmi}. (22)

The solution of equations (8a), (8b), and (8c), which will result
. in a time history of u', G, and §, respectively, as a function
of 8¢, can be obtalned from the Heaviside expansion theorem when there
are simple poles (reference 6). This expansion theorem is an efficlent

method of findin§ the inverse Laplace transform of the quotient of two
polynomials ELE—. If, for example,
F(p)
z -4 ()
& ()

where f(p) end F(p) are polynomials with no common factors and the
degree of f(p) is lower than that of F(p), then for the case of
simple poles and distinct roots .

m

= £(7n) o nfc
&1 7o)

where Ap are the linear and distinct roots of F(p) set squal to

zero. ' The Heaviside expansion theorem is modified ss indicated in
reference 6 if any of the roots of F(p) = 0 are repeated linear
factors. It 1s Ilmportant to note that the expression for the Heaviside
expansion theorem given here 1s different from the expression given

in reference 4 because of the different transforms of functions that
are used in ths Heaviside operational calculus and Laplace transfor—
mation. However, if a problem is consistently followed through by
elther ons of these two operational methods, identical solutioms will
be obtained.

The application of the inversion theorem of Laplace transformation
to the solution of equations (8a)}, (8b), and (8c) by computing residues
is shown in appendix C.
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Lateral Motlon

The nondimensional linsarized NACA standard equations of motion
ere:

Sideslip:

24, (DB + Dp¥) = Oy, B +0y,8 +Z Oy Dyff +0pf+ (Cr, tan 7)¥+ Loy Dy¥
Roll:
5 5 1 1 > (23
24 (Bx2Dp2f +EgzDy2¥) = C, 5+ C 1P+ 5 01 Do g Co By

Yaw:

2y, (72D, 24 + Ky D, 5) = C B+ Cogh + 5 On Doff +3 Cg Dp¥

It is important to note that from the standpoint-of mechanics,
Kx7, should be defined as Kxy = _ngoz —-Kxbe)sin 1 cos 3 in a right—
hend system of axes. However, the definitlon of- Kzy a8 presented in

the. symbol 1list is used in the paper to conform with recent NACA standerd
equations of motion.

The Laplace transformation is demonstrated for the case in which
the control-surface motion can be simulated by the sine function

5 = B, sin asy (2k)

where &y 1s the amplitude. (In most cases 8y 1is assumed to be 1.)
Rearranging and substituting for B give:
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(peas — Ox)o — (& o2y + o) + (Do — o By — O tem 7)¥ = Og 8y et ey
20 + (2mEP02 — 1 03 D) — (B C1 By — wErD )Y = Oy By ein ey

~0ngB ~ (35 On Dp ~ anbxxznb2>¢§ + (Ell'bKZ2Db2 -3 onrnb)v = CGpeBy sin as,

23

-

4 (23=)

J

If the initiel comditioms (for s, = O) are By, fy; Vos Do» 804 T, &nd the trim position
is asgumed as zero (thus &, = 0), the Iaplace transformation (with P substituted for 1
to avoid confusion with angular velocity) for equeticn (23a) cen be written as fallows:l

(o - 0r )i (3 7+ o)+ (onz o =g o e ompagriy
+ 2o — & Oy + (2, -3 0p ¥

—Ozﬂﬁ + <2ube2P2 - -21- CzPP)a - (% Oy P — a;bezP2)7 = Ciz8m P—z-f?-

+ 2I~l‘::Kxa(w’o + Po) - :2" 07'P¢° - % Cy ¥ + 2"‘TJKX?(P"'O + ro)
~0ngB — (-} On P — 2pK; )¢ + (Qll'bKZQP2 —% C0, )V = Ongdn -2—5
- % Onp¢o + %KXZ(P% + Po) + 2“1:1122(1""'0 + 1‘o) - % Cnp¥o
Equations {25) can be expressed in shorter form as
bu-ﬂ_ + .b]_EH + 'b137 = Rl

b21§ + b226 + b23* = ]1'2

.b3l-ﬁ- + 'b326 + 'b337 = H3

> (25)

> (25e)

1For practical engineering purposes a simplified case 1s of Interest, namely
respanse to & horizontal gust ¥, while By = $o =DPo =To =5 = O.
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where

Hy
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11 = 2P - Cyy )
bio = —% CYPP + CL)
b13 = (2ubP — % Cy,® — C, tan 7)
bpy =Ly,
bop = (BEe??2 - & C22) , (26)
bo3 = “(% Cuf - 2“bezP2)
b3]. = "Cnp
b3y = -(% Cn P — eubKXZP?)
b33 = (zubKZQPQ‘—% can)

Y, - eub> \VCJ (P2 + a2)

. _m(?)
P2 + @<

hy (P)

1 1
- 5 O1pfo - ('é C
' (P2 + a2)

- (P + 1a)(P - ia)

(272)
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i CosBma + [Zubez(Pgdo + po) —% clp¢o —-é- Cy¥o+ 2“bKX_Z<Pwo + ro)] (P2 + &2)

Hp
P2 4+ a2
_ _bo(®)
P2 4+ @2
ho(P) (2
= o)
(P + 1a)(P — 1a)
. =Cn58,_na+[—-;- Cn?¢° + QPbKXZ(P% +po) +2ubKZ2(P‘4ro +To —-32; Cnr*o] (P2 + a2)
3 P 4 a2
_ n3(P)
P2 + @2
h (P)
3
_ o
(® + 12)(P — 1a) (27e)
Now equations (25) or equdations (25a) represent three similtansous
algebraic equations which will be solved for B, @, and ¥ by the
method of determinants
p==t (28a)
A
g-2 (28b)
A
¥=3 (28c)
A
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where the determinants are

[>d|
[
o
o
| et

A3=: bzl

b

31
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(29)

(30)

(31)

(32)

If the values of-equations (26) are substituted into equation (29) and
the determinant A 1s expanded, a quartic equation is obtained

A=AP* + BP3 + CP2 + DP+E =0

(33)
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which generally has a pair of complex conjugete roots and two real
roots

P1,2 = —a £ 1b (Dutch—roll oscillation)

— (spiral mode)

P3

Py = —d (rolling subsidence)

Thus
Z\=_(P+a—ib)(1=+a+1b)(P+c)(P+d) (33a)

The coefficients of equation (33) are

A= &""b3 (KXEKZQ - KXZ2>

B = —EMbE[Kxe (2KZECY3 + Cnr) + KZECIP - Kxy, (Cnp +Cy. + ZKXZCYB)]

c = ub[x;;?(cYBch + blpy — Oy Cng) + Kg2(Cy,Cr — Oy Cep)

— Kyy, (cYBczr + OYgln,, + MmCig — Cx,C1g — cchnﬁ)

+ %(c chnr - Cnpclr)]
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D= {—?ubCLE:an 7<KX20nB - szCzB') + KZQCIS - KXZCnB]

+ % CYB (cnpc 1. - czpcnr) + Czé (cn:;cyp - chcnp)

+ Cng (Cr,02 cg?c;£i] + b (C2g0ny, — cnﬂczpi}

_CL
E = Z[6an 7(CagCe, ~ C1gtny) + Cglm - cnﬁczr]

The development of the

s
il

>
n
]

&
i

. boo  bo3
ll =
b3p D33
boi1  b23
Fop = b b
31 33
. bpy  bop
31 — '
by; bz

determinants (30), (31), and (32) gives

HlFll(P) - HE'FJ_Q(P) + H3Fl3(P)

—HlFal(P) + HQFQQ(P) - H3F23(P)

E1F31(P) — EgF3a(P) + H3F33(P)

Fio

Fl3

- NACA TN 2002

(30a)

(31a)

(32a)
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The expansions yield
Fll(P) = lFubz(KXZKZE - KXZE)P]"' - I-l'b[KXZCnr + KZECIP

- x5 (Cay, + clr§lP3 + £(01.0n,, = 02,00 )F° (34)

Fo(P) = %[—sz(hub - Oy,) - KZECYP]P3
+ El;(Cchnr — Oy, Cn) = Wy (Bg 0L, — Kz, tan 7 - bnp):l 2

C1, :
+ ?(cnr — Cp,, tan 7)P (35)

7 5(2) = [bm(S + Or,) - ey, |23

+ {-};(CerYp - Oy, C zp) + by [ECL(KXEtan 7 - sz) + CIJ} P2

+ %‘(Czr ~ Gy ten 7)P (36)

Fou(P) = —2u,(Kg°Cqq — ExzCng) P2 + %(czﬁcnr - CogC2)P (3D
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Pon(®) = {uubxzm -ty (0, + 0, )7

+ [%(CDTCYB - CYrCnB) + 2uanﬁ]P - Cp, tan 7 Cn;;} (38)

FQB(P) = I:huszsz3 + l—’-b(—xxzc'yB - Czr)PQ

i - -
+ 2(czrcYB Oy, Coq + hubczB)P Cp, tan 7 CIQ-_I (39)
F31(P) = [2%(—sz015 + Kx?0ng) P2 + %(cnpczB - anczp)P:l (ko)

F3p(P) = [hprKXZP3 + ub(—EKXZCYB - CnP)P2 + %(cnchB -~ CnBCYP)P

- CLCHB] - (41)

- cLng] (42)

As indicated in the section entitled "Longitudinal Motion" the
golution of equations (28a), (28b), and (28¢), which will result in
a time history of B8, ¢, end Vv, respectively, ss a function of 8 s

can be obtained from the Heaviside expansion theorem (reference 6)
or by computing residues as shown In appendix C.
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Genersl Remarks

The method presented In thils paper can also be applied to cases in
which the airplane is equipped with automatic pilots acting on elevator,
rudder, and allerons. Each automatic pllot is characterized by addi-
tiongl equations of motion. Thus, generelly spesking, there are four
similtaneous equations for longltudinal motion and flve simultansous
equations for lateral motion (two sutomatic pllots). As before, the
Laplace transformastion is applied to these equations and the problam is
treated according to the method indicated in this paper.

Some transforms of simuleting functions for control—surface motion
are presented in appendix D and simplified methods of computation of
Laplace transformation are given In appendix E.

CONCLUDING REMARKS

The application of the Laplace iransformation to the solution
of the ldateral and longitudinal stability equations has been presented.
The expressions for the time history of the motion in response to a
sinmusoidal control motion were derived for the genersl case in which
the initial conditions, initial displacements and initisl velocities,
were assumed different from zero.

Ryan Aeronsutical Company
Lindbergh Field, San Diego, Calif., July 22, 1949



32 NACA TN 2002

APFENDIX A
HISTORICAL SKETCE

A short historical sketch on the development of the operatlonal
calculus and its applicetion to alrplane dynamics 1s presented.

The fundamentals for the theory of small osclllations about =a
steady state of motion were developed. in 1877 by Routh (references 8
and 9). Then as early as 1903 Bryan applied the mathemstical equations
of motion of a rigld body to the disturbed motion of an airplane
(reference 10). In the following years the mathematical theory remained
fundamentally in the form proposed by Bryan, but the method of appli-
cation was changed as the result of the development of experimental
research by the NACA.

During those yeers many sclentlsts were working on the problems of
dynamic stabllity, not only in the United States but also In Great
Britain, France, Belgium, Germany, and other countries. In 1927 the
equatlonsg of motlon were first expressed in dimensionless form
by Glauert (reference 11). Jones, Bairstow, Zimmerman, and Milliken
(references 1, 2, 12, 13, and 1k4) also dealt with dynamic stability
end thelr work is well—known to the average engineer in thls country.

The need for a means of describing the response of the system
(methematically similar to the system used herein) to the applied
disturbance was realized by electrical engineers meny years ago.

In 1899 Heaviside, impelled by this need, contributed a significant-
development. In his electromagnetic theory he originally devised
his operational calculus for the solution of ordinary linear differ—
entlal equations with congtant coefficlents and soms of the partlal
differential equations of applled mathemstics. The principles of
this method are illustrated in reference 15.

The significance of Heaviside's contributions were not recognized
in his lifetime because of the inadequacy of-the mathematical treatment
and ths obscurity of-his papers. Bromwlch, making use of the theory of
functions of & complex vearigble, explelnsd and established the validity
of Heaviside's methods. Bromwich!s method consisted of finding the
gsolution of a given differentlial equation, with initlal and boundery
conditions, in the form of -a complex Integral over a sultabls path;
the cholce of the Integrand and contour is sometimes difficult. Further
ressarch by Carson, Carslaw and Jasger, and Doetsch (references 16
to 18) resulted in the application of the Laplace transformation to
the differential equation. Finally, Doetsch recognized fully ths
value of the "inversion theorem" for the Laplace transformastion. Thus
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the Laplace transformation is an important step forward in operational
mathematics. A complete treatment of the subject of Laplace trans—
formation can be found in references 6, 7, and 17. For soms time now
it has been recognized that by applying the Laplace transform a better
substitute for Hsaviside operational methods can be obtained.

Among the early attempts to apply operstional calculug to the
problems of stabllity end control was a very fundemental work well—
known in this country (reference 4). This paper deals with lateral
motlion and applies Heaviside operastional calculus. ILater several
papers were written on the dynemic response of the aircraft which also
made use of the Heaviside method. Some dealt with tail load variations
dus to elevator motion (for example, see reference 19). Others dealt
with stebility with free controls (reference 20), stick forces in
meneuvers (reference 21), and the behavior of the airplane equlpped
with automatic control (reference 22).
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APPENDIX B

JTLLUSTRATIVE EXAMPLES OF APPLICATION OF LAPLACE TRANSFORMATIOR

Example I

Exemple I illustrates the application of Laplace transform to the
equation o

(D2 - 3D + 2)x = o8t (t < 0)
The initial conditions when t = 0O are

X = Xp

Dx = xl
Table I (transform 3) shows that the transform of
x(t) = o8

is

Thus the Laplace transformation of the given equation is (n = 2 when
equation (2) is applied)

(p2—3p+2)E=P}_a+(px°+xl)—3xo
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Example II

Example II applies the Laplace transform to the equation

(D3-202 + D)x = & (t > 0)
Ths initial conditions when +t =0 are
X = 1
x =2
Xp = -2
Table I (trensform 1) gives the transform for .
x(t) = &
as
x(p) = %

If the rules of equation (2) are applled, the transform can be
written (n = 3) as

(p3.—2p2+p)5§=%+ (p2xo+pxl+x2)—2(paéo+xl) + X,
=%+(p2+2p—2)-—2(p+2) +1

_p3-5p+ b
T
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APPENDIX C
THE INVERSION THEOREM OF LAPLACE TRANSFORMATION

By means of-this theorem x(t) can be obtained from its
transform X(P). If

x(P) = Jw e—Ftx(t)dt— R(P) >0
0

+hen

7+1co
x(t) = 2—-%—“ f z(1)erbar (c1)
7

A )

where 7 1is a constant greater than the real part of all singularities

of. x(\) and
Y+iew 7+iw
= 1lim
7l W—>o Jr-iw

The path (7 — iw, 7 + 10) may be replaced by a circle C containing
all the poles of the integrand. Then x(t) 1s equal to 2xi times
the sum ofresidues at these poles. The method of evaluating the
rosidues 1s shown at the end of this appendix.

Example I

I = P34+ P-4
P2 — 2P — 3
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The inverslion theorem, with A substiltuted for P 1in the equation,
glves

1 [TRa3aa o g,
- L Mrdoh

The denominstor has two roots —3 and 1. The resldues must be evaluated
at two simple poles at A =1 and at A =—3 and then summed In order

to obtain =x.

Example 2

Conslder the simultal;legus equations
(3p+ 2)x+ ¥y = 1%

X+ (lPp+3)F=0

which yleld
T = 4P + 3
P(P +_1)(J.11> + 6)
- 1
J

=f:T.J_P+6)(P+l)

Application of the inversion theorem of Laplace transformation gives the
solution

1 7+l I\ + 3

X = =———— e)"td)h
21 v 1 M2 + 1)(11A + 6)
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1 +1c ex-b
¥y =55z ax
I% \fp s, (1Ih + 6)(% + 1)

The sums of residues on each pole for x and y give the solution as
g function of time.

The inversion theorem for Laplace transformatlion is now applied
to equations (8a), (8b), and (8c). If X\ 1is substituted for P, new
determinants A, &y, &p, end A3 ere obtained from A4, &y, By, and As.
A time history of u', a, and @ as a function of the paresmeter s¢

is obtained when the inversion theorem is applied to these equations
(the path engle 7 is then also determined as 0 = o + 7):

7+ [
W o= s f 2—1 oMBcan (c2)
7—iew .
Y+1 00
A8
o = 5 f 22 oMoy (c3)
7—ico
7+ioo A '
0 =k f 83 Moogy (ck)
7—1eo

In order to evaluate the integrals (C2), (C3), and (Ch), the values of
ell residues for each integral must be found and summed. This procedure
is demonstrated on equation (C2). The perameter A 1s substltuted

for P, equation (10a) is substituted for &, and equation (1la) is
substituted for Zj. The auxiliary substitutions for Gy(X), G(A),
and G3(k) are obtained from equations (Ta), (7b), and (7c). The

values for fli(x), ié(x), and fl3(x) are obtained from eque—

tions (1), (15), and (16) end A is again substituted for P. Then
equation (C2) can be written



; 1 P7+1m [gl(x)fu_(x) - ga(x)f?_e().) + 33(_7L)f33(x)] e?'Bch

v oo ——
u = e

245 Jy 4 (A + 1a)(h - 22)(A + b —1c)(A + b + 1c)(A + 4 — 16) (A + d + 1) (c5)

2002 NI VOWN

The residues R must be evaluated for six simple poles: R) at pole at A = —ia,
RE at pole at l.=ia, RS at pole at 7»=—'b+ic, R)_'_ a'bpolea‘b ).,q—?b_ic,

R; at pole at A = -4 + 1e, and Rg at pole at A = -4 — le. Mnelly u' =EIR. With
the use of the relatioms

olX _ o—ix

sln x = T
ix -1x
COB X = 9—%5—

the u' +termes can be collected and expressed as sine and cosine terms, as illustrated in ths
numerlcal example, If any function other than the slne function were used to Eimlata elevator
motion, there would be no changes in equations (1la), (12s), and (13a) (for Ly, Ay, and A3)
but the expressions for the functions Gy, Gp, G (equations (7a), (Tb), and (T¢)) would be
different. (See appendix D.)

6¢




Nunerical Example

Let

100l 2 a4

EY n?q'i:” _15@,12 . 9 Lrrran Ay ~l.
1 <) \A 4, 45000460 A

+ 1.47731L2
e

u‘ BF ——————

The rocta of the quartlc are

~0.739517 + 11.56351

?J
il
-
o

]

—0.016582 & 0.044189561

?J
A
=

i

Bubstituting these values for M\, 7"2’ 7\.3, and i) glves

nt

; 1 e e™c (A2 + 147731000 + 1344908846 )an
21 jx qe (A + 0739517 — 11.56351) (A + 0.739517 + 11.56351) (A + 0.016582 — 0.044189561) (A + 0.016582 + 0.04h189561)

In this example there are four simple poles. Firgt the residus 1is computed st the pole

M = =0.T39517 + 11.56351

Then
™56 (2.2 + 147731220, + 134.4g908846)
 (Ap + 0.739517 + 11.56351) (A + 0.016582 — 0.044189561) (A, + 0.016582 + 0.044189561)

Ry

200c NI VOVN




Substituting the value for A, in the last equation yields

ellﬂc[_133.1676h68 — 17.102809661 + 1.h773122(—~0.739517 + 11.56351) + 13&.4908846]

By = —3080.28381 + 386.65737

2002 NI VOVN

e*18c(0, 2307403 — 0.019911)
—3080.28381 + 386.65737

L e

With the use of the algebraic msnipulastion of complex mumhers

MBo (0.2307403 — 0.019911) (3080.28381 + 386.65737)

R
- (—3080.28381 + 386.65737)(3080.28381 + 386.65737)

= oM8c (0.1505458 + 0.703047351)
9637.653

(0.00001562 + 0.0000729k1)o(—0-7395LT+1L.56351) 8

At pole Ap = -0.739517 — 11.56351 +the sign of imaglnary peart is changed, thus

Ro = (0.00001562 — 0.000072941)e {0 T39517-11.56351) sc

At pole A3 =-0.016582 + 0.044189561

R »38c (x33 + 1.h77312203 + 134.&908846)
3=e-"

=

(M3 + 0.739517 ~ 11.56351) (A3 + 0.7395L7 + 11.56351) (x3 + 0.0165824 + o.ohl+189561-) =




Substituting for A3 yilelds

G

Rq = QA38c _[:9.0016775 — 0.0014655 + 1.4773122(~0.016582 + 0.044189561) + 13&.&9088&61
11.8173841 — 0.0056074823

Following the sams procedure as that used for the A; root gives

Ry = SM38c (13446471 + 0.063816281)(—11.8173841 — 0.0056074823)
(11.8173841 — 0.0056074823) (—11.8173841 — 0.0056074823)

- o*38c (-0:000133316 + 1589.02147031)
~139. 650596

= (0.0000009546 — 11..376855 (—0.016582+0.044189561) 8,

1Ya

At pole A} = ~0.016582 — 0.044189561 the elgn of the imaginery part 1s changed, thus

Ry, = (0.0000009546 + 11.378551)e (~0-016552-0.01189561)a,

2002 NL VOVN
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Now u' =Ry +Rp + R3 + Ry. Substituting the values for R,, Re:'R3:
and R| yilelds
o = (0.00001562 + 0.0000729481)e{—0-T395LT+1L.56351)8c
+ (0.00001562 — 0.0000729481 ) (—0+739517-11.56351) 8¢

+ (0.0000009546 — ll.378551)e(-o.016582+o.oh1+189561)sc

+ (0.0000009546 + 11.378551) e(—o.016582—o.01m189561)sc

w = o0 T3951T5¢ (g 00001562011+ 703748¢ . o, 00001562511 F03518c

+ 0.00007204816 L+ 563518¢ _ o 000072948141+ 563518c)

+ 6—0 . 01658250 (o . 00000'095}4-66—0 . 0)4-11-18956isc

+ 11. 3785516—-0 . OLF}-I-18956180)

With the use of the relations

2 cos X

1x _ o—1X _ 24 gin x

]
|
o
0

the valus of u' can be expressed as
ut =60 13951 T8¢ (0. 0000312k cos 1156358, — Q. 000145896 s1n 11,56358,)

+6° -016582s, (0.0000019092 cps 0.044189568, + 22. 75710 sin 0.044189568c)

The roots must be computed very exactly to several decimals; other—
wise the computation by the method of residuss does not check to zero.
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Evaluation of Resgidues
(a) Simple pole:

The residue et a simple pole of the function f£(z) 1is

R= lim (z — a)f(z) (cé)
z »a

(p) Multiple pole:

Let )
g(z) = (z — a)™t(2) (c7)
Then the reslidue at the pole of mth order is
m—)
R=—3 _ ap $8lz)
(m—-1)! 5 g doi

= km.i o1 dﬁhil s(zﬂz=a (c8)

Exemple 1 (Simple poles).— Let

i
x=_3;._f7+°° 23 42— b RN
217 fy 4 (A2 — 20 + 2)(A2 4+ 24 — 3)

The denominator has four roots. There are four simple poles (m = 1)
at M =-3, Ao =1, and X3,u =1 1. The computation of the residue

at a simple pole A = -3 1is 1ltustrated. Ifthe term under the integral
slgn is called f(A)dAr, then according to equation (CT)

g(x) = (x = 1)r(d)
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Thus the residue is

R=[ (N-lj(x3+x_u)ext ]
W2 —an+2) (-1 +3),__,

_ (27 -3 -1 30
(9+6+2)(3-1)

=3k -3t L1 3t
4 x 17 2

Example 2 {Double pole).— Let

7+l
«(t) = 1 (Axo + x1 + bxo) e)‘ftd.k

2% rdew (» + 2)°

There is now a double pole (m = 2) at A = a = —2. According to
equetion (CT)

g(r) = (A + 2)2¢(2)

which, when substituted into equation (C8), yields

1t|an

_ _1_[1 ( + 2)2(A,xo + X1 + hxg) GMEI
ar ( +2)? N

= [xoem + t(Axo + %31 + lx-xo)ekt]x
=—2

=.:1coe"2'b + t(—exo + X + hxo)e_et

= [xo + (2xo + xl)t]e_et
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Example 3 (Triple pole).— Let

7+1ee
L N Y 7 7Y

X = =
2ixn Yt oo ()»2 . a2)3

There are triple poles at A = la and at A =-—la. If A = la,
then equetion (C7) gives

gr) = (A — 1a)3 ——*——-3- oMt
(A.E + a2)

which, substituted into equation (C8), gives

——

2H a2 EA. + 1a)(l - ia)]

Ry = L |d2 (r — 1a) oMt ]
1 3
A=ig

__%t 1\ iat
Y] (t + a)e
Similarly, at A = —ia

Ro = ——tﬁ('b' - %)e—iat

16e
X = Rl + R2
With the use of the relatlions

ix —1x

ginx =2_=28

21
ix —~1x

cos x =2__+9
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then

s
8g3

(sin at — at cos at)

k7
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APPENDIX D
TRANSFORMS OF SIMULATING FUNCTIONS FOR CONTROL-SURFACE MOTION

Tn order to include the control-surface deflection as a function
of time (or perameter s end sy) in the equations of motion, the

assumed motion must be simuleted (for simplicity) by some simple known
functions. :

Some exsmples are given which could be satisfactory 1in many

practical cases. The functlons are given here for flve exsmples and
their transforme are given in table II.

(1) Step function:

; (F =0; t <O)
‘LO (F = Fo; t > 0)
0 =>4
(1a) Straight line:
(F = mt + D)
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(2)

4—0’11—)|

=),

(F = Foe"at)

k9

(F = Fo(1 - e"at))
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(5)
s | /2 (F = Fy sin at)
F
_ 2x
v/ ‘ -5
I
I
k: T :L T period

It 1s often convenlent to get the result for unity of control-

surface deflsction (eay one radian); then the result for any sasrbltrary
deflection can be readily computed.
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APPENDIX E
SIMPLIFIED METHODS OF COMPUTATION

The computation of the time history of any parameter can he
shortened in some cases if the form of the solution and also ths
valus of the function and lts first, sscond, and third derivatives
at a gilven time are known. It 1s preferable to find these boundery
conditions at time t = O (initial values). On the esssumption that
the inversion theorem for Laplace transformatlon gives a paramster ¥y
in the form

_ L [T £(2)e¥tan E1
7T B fy_iw Cu=rvTuarw ruarw o v AR

this msthod will be appllied to the longitudinel and lateral motions.

Longitudinal motion.— The denominator (of the stebility equation)
has flve roots with one root 1.5 = 0. The other four roots are

frequently two conjugate complex pailrs:

ot ip

>
]
-
no
1]

5 iy

tal
w
-
=
"

If equation (1) is assumed to give the solution in the form

¥y =Cg + ed't(Cl gin Bt + Co cos ﬁt) + ert(03 sin &t + C) cos Bt) e s e

(E2)

then C, = 1lim y can be evaluated. Differentiation of equation (B2)
t—>w
gives the derivatives ¥, ¥, and ¥.

If the initlal values of these functions are known, that is, y.,
Jos ¥o» and ¥,, &t t = 0 the constants Cj, Co, C3, and Cy of

lThe author is indebted for this suggestion to Mr. J. M. Debevoise.



o2 NACA TN 2002

equation (EE) can be obtained by solving four simultaneous algebrailc
equations which can be written (for t = 0) as follows:

Jo = Co + 02 + Ch « o e (E3)
§ro=ﬁcl+ac2+ac3+7ch... (Eh4)
¥, = 2apoy + (o — p2)c, + 27805 + (2 - 8%)cy . . . (E5)

¥y = (3028 — B3)oy + (a3 - 3082)0, + (3726 — 83)c5

+ (B =37%0, . .. (E6)

The velues of °‘y° can also be obtained by plotting ¥ against +t.

§ = &% {[(a?- - p%)cy - 2&502]91n Bt + [2@501 + (@@ - 32)02] cos Bt}
+ o7t {[(72 - 52)03 - 27801;|sin 5t + [éysc3 + (2 - 52)01,_]005 Bt}

Laterel motion.— For the case of lateral motion the equation has
one root X5 = 0, one conjugate complex pair, and two real roots

M,2 =0 + ip
Ay =7
Ay =B
The time history of any parameter ¥y can be written

¥y =Co + eXt(Cl sin Bt + C, cos Bt) + e7tC3 + eStch (ET7)
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and, as before, Cg = l__igw y. The initlal values of yg5, Jos Yos
and y, for t =0 sare assumed to be known. Differentiating

equation (E7) and substituting for t = 0 give four simultaneous
algebraic equations from which the constants C;, Co, C3, and C)

of equation (E2) can be determined:

Yo =Co +Cp+C3+Cp « . . (E8)
Jo = BCp + alip + 705 + 8Cy .« .« . (E9)
¥o = 2080y + (@@ — p2)cy + %05 + 8%y, . . . (£10)

¥, = (368 — B3)Cy + (a3 - 3082)c, + 7303 +83¢, . .. (E1)

If desired the value of °y' can be obtained by plotting ¥ against
time

¥ = ot {[(a? - BE)C; - 2aac2] sin Bt + [au.ﬂcl + (o? ~ aa)ca] cos sjt}

+ e'ﬁ’7203 + es_tﬁac)_l_

In the cases in which thers are simple poles, the method presented
In reference T can be used. This method is 1llustrated briefly. It
hes been seen that any parameter y of the equations of motion (such
as o, 0, ¥, P, and so forth) expressed as a function of the_
operator P can be written as a ratio of two determinants A(P)
and B(P) which are polynomisls in P

N 6)
¥(®) = @)

Thus the characteristic equation is

B(P) =0
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This equation is & polynomial in P, the highest power of- P being q;
thus it has ¢ roots: Aq, Ap, « « x The inversion theorem gives

7 (%) _ Alt) f—h‘l At (4 2 o)

“B0) LT P(M)
where

=83
B! S5 B(P)

For multiple poles and speclal cases, see reference T (pp. 152
to 169).
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11.

13.
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TABLE I

SIMPLE LAPLACE TRANSFORMS

o0
Transform x(%) X(P) = f e Ttx(t)dt
0
1 1 %
[ ]
5 .¢2~1  (n a positive 1
(n — 1)1 integer) el
at 1
3 8t (P > Re(a)) Ry
h- Bin at ;2—48'-—2'
+ a
P
P cos at
P2 + a2
6 sin h at(P > [a]) —a
P2 a2
P
T cos h at(P > |al) -;2-———-—2
- a
t P
8 — gin at ————
2a (P2 + a2)2
1 1
9 —(sin at — at cos at) —
2a (Pe + a2)
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TABLE IT

NACA TN 2002

TRANSFORMS OF SIMULATING FUNCTIONS FOR CONTROL-SURFACE MOTION

Trensform for
initial condition

Transform for

Control—surface 5 =0 o
Type | motion determining o~ assumption
x(t) o Fo=1
x(P) = f o~ Flx(t)dt x(P)
(0]
[ ]
1 Fo(t) step Fo 1
function P P
1a mh + b (m + bB) /P2 For b =0, m/P?
—at Fo 1
2 l FOe P+a P+
Foa
F (l - e—a@ —o a
’ ° P(P + a) (P + a)
: Fsb
L Foe“at(l ) o b
(P +-2)(P + a + D) (P+a)(P+a+hb)
Foa
5 Fo 8in at ° —
P2 + a° P2 + a2

\\EPA’CA -
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Axes

————
Wind direction

Horlzontal axls

Flgure 1.~ Axes and notation used. Arrows indicate positive directions
of moments, forces, and angular displacements,

NACA-Langley - 1-5-50 - g0



